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SUMMARY

Rotary oscillations of several axi-symmetric bodies in axi-symmetric viscous �ows with slip are in-
vestigated. A numerical method based on the Green’s function technique is used wherein the relevant
Helmholtz equation, as obtained from the unsteady Stokes equation, is converted into a surface integral
equation. The technique is benchmarked against a known analytical solution, and accurate numerical
results for local stress and torque on spheres and spheroids as function of the frequency parameter
and the slip coe�cients are obtained. It is found that in all cases, slip reduces stress and torque, and
increasingly so with the increasing frequency parameter. The method discussed here can be poten-
tially extended to the realistic case of an oscillating disk viscometer. Copyright ? 2003 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

There have been several studies of oscillations of axi-symmetric bodies in axi-symmetric, vis-
cous, incompressible �ow at low Reynolds number with no-slip boundary conditions. Two
important modes of oscillation involved the translational, in which the body performing os-
cillation displaces the �uid around the body, and the rotary, in which the body performing
oscillation does not displace the �uid. Details of translational oscillation studies can be found
in the literature [1–14]. The problem for the oscillation with small amplitude where the
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Reynolds number is very small arises from the principle that involves the solutions to the
unsteady Stokes equations [15, 16],

�2
@u
@�
=−∇p+∇2u (1)

where �2 =!a2=� is the dimensionless frequency parameter. Here, a is the characteristic length
of the body and ! is the frequency of oscillation, �=�=� is the kinematic viscosity. Note
that, � is the dynamic viscosity and � is the mass density of the �uid.
The most notable application of rotary oscillations of axi-symmetric bodies is the oscillating

cylindrical disk viscometer that has been used extensively in measurements of �uid viscosity.
Moreover, rotary oscillations of a body in a �uid are of interest in studies of Brownian motion
of particles, ultrasonics, and electroacoustics. The analytical solutions to the oscillation prob-
lem are limited to certain bodies with simple geometries. Some approximations are employed
for more complicated bodies in order to facilitate analytical solutions. Recently, Tekasakul
et al. [15] have solved the problem of several axi-symmetric bodies numerically from the
unsteady Stokes equations for no-slip boundary conditions, and Zhang and Stone [16] have
provided a range of useful solutions for bodies in several modes of rotation. These authors
reported results for local stresses and torques on the bodies. Comparison showed that the accu-
racy of the numerical method was excellent. When the body dimension is only about an order
of magnitude larger than molecular mean free path of the �uid, one must, however, consider
�uid slip at the surface. The previous works [17–22], as it turns out, have emphasized the
problem with no-slip boundary conditions with a few exceptions. MacWood [23, 24] obtained
an approximate solution for a thin cylindrical disk with slip conditions (used in oscillating
disk viscometer) by use of edge correction where some accuracy was lost. Shah [25] obtained
slip solutions for some simple geometries in Laplace transform domain.
The slip at boundaries occurs when the Knudsen number (Kn) is in the order of 0.1. The

Knudsen number is de�ned as the ratio of molecular mean free path of the medium (�g)
and the characteristic length of the body (a), i.e. Kn= �g=a. The �ow regimes classi�ed by
the Knudsen numbers include the free molecular (Kn�1), the transition (Kn∼ 1), the slip
(Kn∼ 0:1), and the continuum �ow regime (Kn�1). The molecular mean free path of the
gas medium is de�ned as

�g=
�
p

(
2kT
m

)1=2

where � is the dynamic viscosity, p is the pressure, k is the Boltzmann’s constant, T is the
temperature, and m is the mass of the medium. The slip boundary condition at the surface of
a body involves both the molecular mean free path and the slip coe�cient, cm, which can be
represented quite accurately (error of 1%), by [26]

cm=
2− �
�

[
(1− �)

�1=2

2
+ ��(1)

]

where � is the momentum accommodation coe�cient, and �(1), corresponding to �=1, has a
value between 0.9875 and 1.02, depending on the nature of the gaseous intermolecular inter-
action. If �(1) is replaced by

√
�=2, the above equation becomes Maxwell’s relation [27]. The

slip becomes of greater signi�cance as the pressure decreases below atmospheric, particularly
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for the value of Kn∼ 0:1. For a slip �ow, Navier–Stokes equations, and, hence, the unsteady
Stokes equations are applicable when used with slip boundary conditions. Maxwell [27] de-
�ned the concept of the slip velocity by expressing the (asymptotic) surface velocity in terms
of the (asymptotic) velocity gradient at the surface. Note that in a free molecular �ow, so-
lutions to the Boltzmann equations are needed, and the Navier–Stokes equations with slip do
not su�ce.
While solutions of the Navier–Stokes equation with slip conditions are of substantial in-

terest for gases, recently it has been noted that slip conditions are of interest for liquids as
well, particularly with respect to micro and nanofuidic conditions. For example, Barrat and
Bocquet [28] have used molecular dynamics to compute slip for liquids, and Hervet and
Leger [29] have measured slip for hexadecane on several modi�ed sapphire surfaces using a
rotating disk.
In this paper, we investigate calculations of local stresses and, hence, torques on axi-

symmetric bodies performing rotary oscillation in an unbounded �uid medium and in viscous
�ow with slip boundary condition. The geometries of our interest are sphere, oblate spheroid
and prolate spheroid. The numerical technique is based on that used by Tekasakul et al. [15].
The results of this paper are of interest for oscillating bodies in gases as well as liquids.
In the next section, the problem is described. In Section 3, analytical solutions for a sphere

with constant slip on the surface are obtained from the technique employing the solutions
from the no-slip case. In Section 4, numerical procedure for this problem is discussed and
solution technique is outlined. In Section 5, numerical results and available analytical results
for local stresses and torques for a sphere, an oblate spheroid and a prolate spheroid are
presented. We discuss and conclude the present work in Section 6, together with suggestions
for possible future work.

2. STATEMENT OF THE PROBLEM

We consider an axi-symmetric body (Figure 1) with a characteristic length, a, oscillating with
frequency, !, about its axis of symmetry (de�ned as the z-direction) in an unbounded gas
with kinematic viscosity, �, slip coe�cient, cm, and molecular mean free path, �g. The angular
velocity of the oscillating body is given by � cos(!t). The dimensionless unsteady Stokes’
equation for a time-dependent, 	-component velocity as obtained from Equation (1), can be
written as [15]

�2
@û	

@�
=
(

@2

@$2 +
1
$

@
@$

− 1
$2 +

@2

@z2

)
û	 (2)

Here $ is the radial direction perpendicular to the z-axis as shown in Figure 1. The slip
boundary condition at the body surface is

û	(rs)=$s exp(i�) + (cm�g)
̂(rs) (3)

while, far away from the body,

lim
r→∞ û	(r)=0 (4)
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Figure 1. The co-ordinate system used in the present work for a general axi-symmetric body
oscillating in an unbounded �uid with slip.

Here 
̂(rs) is the dimensionless time-dependent local stress. The length, time, velocity, and
pressure are non-dimensionalized in terms of a, !−1, U = |�|a=�a, and �U=a, respectively.
For a sphere, the characteristic length, a, is a radius whereas for prolate and oblate spheroids
the equatorial radii are used. The solution is assumed to be of the form:

û	($; z; �)= exp(i�)u	($; z) (5)

Applying the Je�ery transformation [30]:

w($; z; 	)= u	($; z) cos(	)

and following the manipulation of Tekasakul et al. [15], we have:

∇2w=
(

@2

@$2 +
1
$

@
@$

− 1
$2 +

@2

@z2

)
u	 cos(	) (6)

which leads to the Helmholtz equation:

(∇2 + k2)w=0 (7)

The slip boundary condition at the surface now becomes

w(rs)= [$s + (cm�g)
(rs)] cos(	s) (8)
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and the limiting condition of the �uid far away from the body is

lim
r→∞w(r)=0 (9)

Here �2 =!a2=� is the dimensionless frequency parameter and k2 =− i�2 is the dimension-
less complex-valued frequency parameter. The dimensionless, time-independent local stress is
de�ned as


(�)=$
@
@n

(u	

$

)
(10)

while the dimensionless, time-independent torque on the body can be evaluated from

T =2�
∫
c
$2
(�) ds (11)

Here, � is a co-ordinate specifying a point on the meridian contour of the body for which
−16�61. Note that the dimensionless, time-independent torque has been non-dimensionalized
by ��a3 and the transient term exp(i�) has been dropped.

3. ANALYTICAL SOLUTIONS FOR CONSTANT SLIP

The solution of an oscillating sphere in an in�nite �uid medium with slip can be obtained
from the solution of the oscillation sphere with no-slip. We consider two separate problems,
one with no-slip and the other with non-zero constant slip, simultaneously. For the no-slip
case, Equations (7)–(9) with cm�g=0, can be written as

Lu	1 = 0 (12)

The no-slip boundary condition at the surface of the sphere becomes

u	1 = sin � (13)

where � is the polar angle and far away from the sphere:

lim
r→∞ u	1 = 0 (14)

For the constant-slip, the problem can be written as

Lu	2 = 0 (15)

The slip boundary condition at the surface of the sphere is

u	2 = sin �+ c2 sin �=(1 + c2) sin � (16)

and the limiting condition of the �uid far away from the sphere is

u	2 = 0 (17)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:823–840



828 P. TEKASAKUL AND S. K. LOYALKA

where 	s and c2 are constants, subscripts 1 and 2 represent the no-slip and constant slip cases,
respectively, and the operator L is

L=
(

@2

@$2 +
1
$

@
@$

− 1
$2 +

@2

@z2

)
+ k2

Substituting u	2 = (1+ c2)u	1 into Equations (15)–(17), the slip problem becomes the no-slip
problem. Therefore the relation

u	2 = (1 + c2)u	1 (18)

is the solution for the slip problem.
From Equation (8) for the slip case, the constant, c2, can be written as

c2 =
(cm�g)
sin �


2 =
(cm�g)
sin �

$
@
@n

(u	2

$

)
(19)

Now dividing Equation (18) by $, di�erentiating the resulting expressions with respect to the
normal direction, and multiplying by $, we get

$
@
@n

(u	2

$

)
=(1 + c2)$

@
@n

(u	1

$

)
(20)

that is,


2 =
(
1 +

cm�g

sin �

2

)

1 (21)

And we get,


2 =

1

1− 
1(cm�g)= sin �
(22)

The above equation shows that the stress on the oscillating sphere for the constant-slip case
(
2) can be determined from the knowledge of the stress for the no-slip case (
1).
Since the local stress for the no-slip case is [15, 17]


zero-slip =
1 = −
[
3− k2

1 + ik

]
sin � (23)

the local stress for the slip case becomes


slip =
2 =
−
[
3− k2

1 + ik

]
sin �

1 + (cm�g)
[
3− k2

1 + ik

] (24)
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Torque on the sphere can then be evaluated straightforwardly from

T =2�
∫
c
$2
 ds

=2�
∫ �

0
sin2 �




−
[
3− k2

1 + ik

]
sin �

1 + (cm�g)
[
3− k2

1 + ik

]

 d�

=−8
3
�

3− k2

1 + ik

1 + (cm�g)
[
3− k2

1 + ik

] (25)

However, these simple forms of relationship do not appear to hold in general for spheroids,
for which even the no-slip case leads to complicated eigenfunction expansions.

4. NUMERICAL SOLUTIONS

The numerical method used in the present work is based on the Green’s function approach
in which for this problem, it can be de�ned by

(∇2 + k2) (r; r′)=− 4��(r− r′) (26)

such that

 (r; r′)=
exp(−ik|r− r′|)

|r− r′| (27)

Following the procedure of Tekasakul et al. [15] [see their Equations (23)–(26)], and
applying the slip boundary condition, the problem becomes

−
∫ (

 (rs; r′s)
{
cos(	′)
(r′s) +

[
(cm�g)
(r′s)

$′
s

]
@
@n′s

[$′
s cos(	

′)]
}

−[(cm�g)
(r′s)] cos(	
′)

@ (rs; r′s)
@n′s

)
dr′s

=2�[$s + (cm�g)
(rs)] cos(	)

+
∫ [

 (rs; r′s)
@
@n′s

[$′
s cos(	

′)]−$′
s cos(	

′)
@ (rs; r′s)

@n′s

]
dr′s (28)
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Using Green’s second identity and

∇2
r′$

′
s cos(	

′
s)=0 (29)

Equation (28) becomes

−
∫ {

 (rs; r′s) cos(	
′
s)
(�

′)
[
1 +

(cm�g)
$′

s

@$′
s

@n′s

]}
J ′
s d	

′
s d�

′

+
∫ {

[(cm�g) cos(	′)
1(�′)]
@ (rs; r′s)

@n′s

}
J ′
s d	

′
s d�

′

=2�(cm�g)
(rs) cos(	)− k2
∫

 (rs; r′s)$
′
s cos(	

′
s)J

′
s d	

′ d�′ (30)

as drs= J d� d	, where J is the Jacobian for the integration.
We de�ne,

f=1+
(cm�g)
$′

s

@$′
s

@n′s

K =
J ′
s

cos(	)

[∫
 (rs; r′s) cos(	

′) d	′
]

H =
J ′
s

cos	s

[∫
@ (rs; r′s)

@n′s
cos(	′) d	′

]

and

�=
J ′
s

cos	s

[∫
 (rs; r′s)$

′
s cos(	

′) d	′ d�′
]

Whence Equation (30) can be written as∫
L(�; �′)
(�′) d�′= − k2�(�; �′) + 2�(cm�g)
(�) (31)

where

L(�; �′)=−f(�′)K(�; �′) + (cm�g)H (�; �′) (32)

Equation (31) is a Fredholm integral equation of the second kind. Applying the singularity
subtraction technique, the above equation becomes

g(�)
(�) +
∫

L(�; �′) [
(�′)− 
(�)] d�′=− k2�(�; �′) + 2�(cm�g)
(�)
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or

[g(�)− 2�(cm�g)]
(�) +
∫

L(�; �′) [
(�′)− 
(�)] d�′=− k2�(�; �′) (33)

where

g(�)=
∫ 1

−1
L(�; �′) d�′ (34)

The integrals in Equation (33) are converted to summations by the use of Gaussian quadra-
tures. Together with collocation at the nodal points of the quadrature, Equation (33) then
reduces to a system of linear algebraic equations. The stress, 
(�), is determined at the nodal
points of the quadrature. The total torque can then be determined from the stresses using
Equations (10) and (11).

4.1. Determination of f

For the case of a sphere, we can write, z= r cos �, $= r sin �, and

1
$s

@$s

@ns
=
1
$s

@$
@r

∣∣∣∣
r = 1

=1

then

f=1+ (cm�g) (35)

For spheroids with the geometries shown in Figure 2, in which z= c��, $= c[(1 + �2)
(1− �2)]1=2, we have

c2 =

{
A−2 − 1 Prolate spheroid

1− A−2 Oblate spheroid

�0 =
b
c

at surface

h� =
1
c

(
1 + �2

�2 + �2

)1=2

and

1
$s

@$s

@ns
=
1
$s

h�0
@$
@�

∣∣∣∣
�0

=
�0

c[(1 + �20)(�2 + �20)]1=2

Hence

f=1+
(cm�g)

c
· �0
[(1 + �20)(�2 + �20)]1=2

(36)
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Figure 2. The spheroidal geometries that are considered in this work. (a) Prolate spheroidal co-ordinates.
(b) Oblate spheroidal co-ordinates. In both cases, the aspect ratio is A= a=b.

4.2. Determination of K

The expression of K can be written as [15]

K(�; �′) =
J ′
s

cos(	)

∫
 (rs; r′s) cos(	

′) d	′

=KL(�; �′) + KH (�; �′) (37)

where

KL(�; �′)=
J ′
s

cos(	)

∫
cos(	′)
|r′s − rs|

d	′=
2J ′

s√
$s$′

s

Q1=2(
) (38)

and

KH (�; �′) =
J ′
s

cos(	)

∫
exp(−ik|r′s − rs|)− 1

|r′s − rs|
cos(	′) d	′

=
J ′
s

cos(	)

∫ 2�

0

exp(−ik[2$s$′
s(
− cos(	− 	′))]1=2)− 1

[2$s$′
s(
− cos(	− 	′))]1=2

cos(	′) d	′ (39)

Here, Q1=2(
) is an Associated Legendre function of fractional order with the argument


=1+
�

2$s$′
s
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in which

�=($′
s −$s)2 + (z′s − zs)2

4.3. Determination of H

The expression of H can be written as

H =
J ′
s

cos(	)

[∫
@ (rs; r′s)

@n′s
cos(	′

s) d	
′
s

]

Since

 (rs; r′s)=
exp(−ikt)

t

and t= |rs − r′s |, we have:

@ (rs; r′s)
@n′s

= (1 + ikt) exp(−ikt) @
@n′

(
1
t

)

= (1 + ikt) exp(−ikt)
(
− (r

′
s − rs) · n′outward

|rs − r′s |3
)

And thus, for spheroids in general (including sphere), we have

H (�; �′) =− 1
cos(	)

$′
s

A

∫ 2�

0

{
(1 + ikt) exp(−ikt)[2$s$′

s(
− cos(	− 	′))]−3=2

[
[z′s − zs]

z′s
[A−2 − z′s2]1=2

A+$′
s −$s cos(	− 	′)

]
cos(	′)

}
d	′ (40)

4.4. Determination of �

From Tekasakul et al. [15], we have

�(�) cos(	)=− 4�
k2
($s cos(	))−

∫
inside
body

exp(−ik|r′ − rs|)
|r′ − rs| $′ cos(	′) dr′ (41)

For a sphere, this expression can be written as

�(�) cos(	) =
2�$s cos(	)

k2

{
−2 +

(
1 +

i
k

)
+ exp(−i2k)

(
1− i

k

)

+
i
k

(
1 +

3
k2

)
− exp(−i2k)

k3
(3i− 6k − 5ik2 + 2k3)

}
(42)
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For a prolate spheroid, it becomes [31]

�(�) cos(	)

=− 4�
k2
[$s cos(	)]− c3

2

∫ �0

0
d�′

∫ �

0
d�′

∫ 2 �

0
d	′

×
{
exp(−ik[2$s$′

s(
− cos(	− 	′))]1=2)
[2$s$′

s(
− cos(	− 	′))]1=2

× $′ cos(	′)[cosh(2�′)− cos(2�′)] sinh(�′) sin(�′)
}

(43)

And �nally, for an oblate spheroid, we have [31]

�(�) cos(	) =−4�
k2
[$s cos(	)]− c3

2

∫ �0

0
d�′

∫ �

0
d�′

∫ 2 �

0
d	′

×
{
exp(−ik[2$s$′

s(
− cos(	− 	′))]1=2)
[2$s$′

s(
− cos(	− 	′))]1=2

×$′ cos(	′)[cosh(2�′) + cos(2�′)] cosh(�′) sin(�′)
}

(44)

5. LOCAL STRESSES AND TORQUES

Our main goal in this paper is to study the e�ect of the slip on the local stress on the surface
and torque exerted on an oscillating sphere and spheroids, and to assess the accuracy of a
numerical technique. We have carried out numerical calculations using MathematicaJ 4:0.
We have benchmarked the accuracy of the method against known solution for a sphere. The
results of this benchmarking are reported below and are followed by our results for the prolate
and oblate spheroids.
Numerical results for the dimensionless time-independent torque (T ) are presented as func-

tions of the product of the slip coe�cient and molecular mean free path (cm�g) for the
dimensionless frequency parameter (�2) between 0.01 to 100.0. Since k2 =− i�2, only the
positive root of k is used, i.e.:

k= + (1− i)�=
√
2 (45)

The time-independent torque is obtained by dropping the term, exp(i�). The real part of
torque is a component that varies in phase with body motion while the imaginary part is the
out-of-phase component and then does not contribute to energy dissipation [16].
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5.1. Sphere

Since the analytical solution for an oscillating sphere with slip can be obtained from the
no-slip solution, we �rst benchmark the accuracy of the numerical method against the an-
alytical solutions for a sphere for values of cm�g ranging from 0.001 to 0.1 and values of
�2 ranging from 0.01 to 100.0. In these calculations, 20 point Gaussian quadratures were
used for �2610:0 and 30 point quadratures were used for �2 = 100:0. Both the torques and
the local stresses on the sphere are calculated and compared to the corresponding analytical
values.
Numerical results for the real and imaginary parts of the torque on a sphere are given in

Figures 3(a) and 3(b), respectively. Analytical values for this sphere that have been determined
from Equation (25) are also included for comparison. In general the agreement is very good.
The numerical results di�er from the analytical values by a maximum of 4%. In this section,
values of �2 is displayed instead of k2 since k2 is complex. Torques increase with increasing
�2, as expected [15]. As seen in Figures 3(a) and 3(b), the values of torques decrease as
the slip term cm�g becomes greater. The decrease of the real part of torque ranges from 23%
for �2 = 0:01 to 41% for �2 = 100:0, while, for the imaginary part, the decrease ranges from
41% for �2 = 0:01 to 76% for �2 = 100:0. It is obvious that the e�ect of slip is signi�cant for
the range considered (0:0016cm�g60:1) and becomes greater for an oscillation with higher
frequency. Numerical results for the real and imaginary parts of the local stress on a sphere
for which �2 = 1:0 have been obtained via our numerical technique and are compared with
values calculated from Equation (24) in Figures 3(c) and 3(d), respectively. The agreement is
generally very good with errors less than 1% over the entire range of � except for cm�g=0:1
where the error increases to about 5%.
The good agreement between the numerical and analytical values for the case of a sphere

demonstrates that the order of quadrature used are appropriate. The errors are quite small
for small values of �2 and increase noticeably only for the largest values of �2. The er-
rors at large values of �2 are due to the relative thinness of the oscillatory viscous bound-
ary layer which requires a higher number of Gaussian quadrature points for accurate
modeling.

5.2. Prolate spheroid

Twenty-point Gaussian quadratures were also used in these calculations. Numerical results
for the real and imaginary parts of the torque on a typical prolate spheroid with A=0:5 are
given in Figures 4(a) and 4(b), respectively. Tekasakul et al. [15] showed that for the prolate
spheroid with the same aspect ratio, the no-slip torque increases as �2 increases. As shown in
Figures 4(a) and 4(b), torque decreases as the slip term cm�g becomes greater, as in the case
of the sphere. The decrease of the real part of torque ranges from 16% for �2 = 0:01 to 31%
for �2 = 100:0, while, for the imaginary part, the decrease ranges from 35% for �2 = 0:01 to
72% for �2 = 100:0. The e�ect of slip for a prolate spheroid is similar to the case of a sphere
in the previous section for the range considered (0:0016cm�g60:1). Numerical results for the
real and imaginary parts of the local stress on the same prolate spheroid for which �2 = 1:0
are also shown in Figures 4(c) and 4(d), respectively. The results are similar to those of a
sphere.
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Figure 3. A comparison of the numerically determined torques and local stresses on a sphere with
the corresponding values determined analytically. Symbols indicate numerical results while various
lines indicate corresponding analytical results. (a) The real parts of the torques for �2 = 0:01–100.0.
(b) The imaginary parts of the torques for �2 = 0:01–100.0. (c) The real parts of the local stresses
for �2 = 1:0 and cm�g=0:001, 0.01, and 0.1. (d) The imaginary parts of the local stresses for
�2 = 1:0 and cm�g=0:001, 0.01, and 0.1. The number of Gaussian quadrature points used in the
numerical calculations was 20. Due to symmetry, only the stress values for the upper half of
each body have been shown. Here, � is the co-ordinate that speci�es points on the meridian

contours of the bodies, and �2 =!a2=� is the dimensionless frequency parameter.
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Figure 4. Numerical results for torques and local stresses on a prolate spheroid with A=0:5. (a)
The real parts of the torques for �2 = 0:01–100.0. (b) The imaginary parts of the torques for
�2 = 0:01–100.0. (c) The real parts of the local stresses for �2 = 1:0 and cm�g=0:001, 0.01, and 0.1.
(d) The imaginary parts of the local stresses for �2 = 1:0 and cm�g=0:001, 0.01, and 0.1. The number

of Gaussian quadrature points used in the numerical calculations was 20.

5.3. Oblate spheroid

We used 20-point Gaussian quadratures in the calculation for an oblate spheroid also. Nu-
merical results for the real and imaginary parts of the torque on a typical oblate spheroid
with A=2:0 are given in Figures 5(a) and 5(b), respectively. As also shown by Tekasakul
et al. [15], the torque increases as �2 increases. The torque for the oblate spheroid decreases
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Figure 5. Numerical results for torques and local stresses on an oblate spheroid with A=2:0. (a)
The real parts of the torques for �2 = 0:01–100.0. (b) The imaginary parts of the torques for
�2 = 0:01–100.0. (c) The real parts of the local stresses for �2 = 1:0 and cm�g=0:001, 0.01, and 0.1.
(d) The imaginary parts of the local stresses for �2 = 1:0 and cm�g=0:001, 0.01, and 0.1. The number

of Gaussian quadrature points used in the numerical calculations was 20.

as the slip term cm�g becomes greater, as in the case of the sphere and the prolate spheroid
considered previously. The decrease of the real part of torque ranges from 29% for �2 = 0:01
to 44% for �2 = 100:0, while, for the imaginary part, the decrease ranges from 51% for
�2 = 0:01 to 76% for �2 = 100:0. The e�ect of slip for an oblate spheroid is also similar to
the case of a sphere and a prolate spheroid in the previous section for the range considered
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(0:0016cm�g60:1). Numerical results for the real and imaginary parts of the local stress on
the same oblate spheroid for which �2 = 1:0 are shown in Figures 5(c) and 5(d), respectively.
The results are similar to those of a sphere and a prolate spheroid.

6. DISCUSSIONS AND CONCLUSION

We have shown that the numerical technique, used in the calculations of torques and lo-
cal stresses on axi-symmetric bodies undergoing slow rotary oscillations about their axes of
symmetry in unbounded viscous �uids with slip, is accurate by benchmarking against exact
solution for a sphere. The numerical results for spheres agree well (maximum error less than
4%) with the corresponding analytical values as shown in Figures 3(a)–3(d). The accuracy
of the calculations can be improved for high oscillating frequency (�2) by increasing num-
ber of Gaussian quadrature points. In the present work, we have used 20-point quadrature
throughout for the values of �2 as high as 100.0 except for the case of a sphere where the
30-point quadrature was used for the case of �2 = 100:0. In the range of slip we have studied
(0:0016cm�g60:1), it is apparent that the increase of slip always lowers the values of torques
and the e�ect is greater for higher value of �2. The reduction of torque due to the presence of
slip at the body surface therefore shortens the period of oscillation of the bodies. The e�ect
of slip for a typical prolate spheroid (A=0:5) and a typical oblate spheroid (A=2:0) were
found to follow the same trend as in the case of a sphere.
This work is a continuing e�ort in the investigation for the complete solutions for the

problem of axi-symmetric bodies undergoing rotary oscillation used previously in calculations
of the torque on axi-symmetric bodies undergoing rotary oscillation in an unbounded �uid
without slip on the surface of the bodies [15]. One of the most notable applications of rotary
oscillation of an axi-symmetric body, as stated earlier, is the oscillating disk viscometer. We
are planning to extend the work of this paper to viscometer in the near future, and this
should facilitate the extraction of the velocity slip and tangential momentum accommodation
coe�cients also from the data in the same manner as has been accomplished by the use of
spinning rotor gauge [32,33].
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